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CONSTANT HERMITIAN SCALAR CURVATURE
EQUATIONS ON RULED MANIFOLDS

YING-JI HONG

In this paper we prove an existence result for Kahler metrics with
constant Hermitian scalar curvature (CHSC) on ruled manifolds. This
is part of a research program suggested by Simon Donaldson, [6], which
is closely related to Tian’s work, [16], and Yau’s conjecture on Einstein-
Kahler metrics. The main result (Theorem A) of this paper has been
announced in [9], where a partial proof has been given. We recall the
statement (and assumptions) of Theorem A as follows:

[f] Assume that (M : wps) is an m-dimensional compact Kéhler
manifold with constant Hermitian scalar curvature and 7 : £ — M is
a simple holomorphic vector bundle of rank n over M with an Einstein-
Hermitian metric Hg. Let A denote the Einstein-Hermitian connection
on F induced by Hp. Let P(F) denote the projectivization of E over
M. Then P(F) is an (m + n — 1)-dimensional complex manifold. Let
L be the universal line bundle over P(E). Then the Einstein-Hermitian
metric Hp induces a Hermitian metric Hy« on L* over P(E). Thus
there is a representative

1 T =
—F = —-00logHp-
<27r HL*) 27 00log Hy,

of the Euler class e (L*) of L* on P(E) induced by the Hermitian metric
Hp-. Note that the representative (5=F,.) of e (L*) on P(E) induces
the Fubini-Study metric on each fiber of 7 : P(E) — M. Thus, for
each k£ € N large enough,

i .
(%FHL*> +k-ifwp

Received December 21, 1998, and, in revised form, March 7, 2000.

465



466 YING-JI HONG

is a Kéahler form on P(FE).

Theorem A. Under the assumption [{] we assume further that there
s no nontrivial infinitesimal deformation of Kdahler forms in the Kdahler
class [war] on M with constant Hermitian scalar curvature. Then, for
each k € N large enough, there exists a Kdhler form on P(FE) in the

Kahler class '
? ~ ok
[<%FHL*> + k-7 wM]

with constant Hermitian scalar curvature.

Remark. When F is stable, it is known that there exists an
Einstein-Hermitian connection on E by the results of Donaldson ([4]
and [5]), Uhlenbeck and Yau ([17]). Conversely, when F is simple and
admits an Einstein-Hermitian connection, it is known that £ must be

stable ([10]).

Instead of proving Theorem A directly, we shall actually establish
the following result in this paper.

Theorem B. Under the assumption [{] we assume further that there
s no nontrivial infinitesimal deformation of Kdahler forms in the Kdahler
class [wpr] on M with constant Hermitian scalar curvature. Then there
exists v, > 0 such that the following statement is true:

Given vy > v, there exists ¢, € N such that the following statement is
true: Given q > qy there exists Ni,.q) € N such that for each N > N(,.q)
there exists correspondingly k(,.q.ny € N such that, for each k > k(y.q.n),
there exists a unique Kahler form

NWik] T 100
lying in the Kahler class

i ~ ok
[<%FHL*> + k-7 wM]

N1l g2 < k71

carrying constant Hermitian scalar curvature. Note that ¢ depends on
the parameters N and k.

with

Here wp is defined as follows:

N

e i00
NWik] = oWlg] + 100¢o + Z i
=1

ka
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with each ¢y, 0 < 8 < N, being defined via the Induction Scheme
introduced in [9]. ||| yr2r+a) is the HZ 4 norm of 4 with respect to
the Hermitian form (metric) @ on P(E):

19| grizvear = 1]+ (IV] + -+ + ||V Ty

with |le|| being the L2-norm of e with respect to the Hermitian form
(metric) @ on P(E).

Note that Theorem A follows from Theorem B. Actually Theorem B
provides high regularity and good approximations for the solution of the
constant Hermitian scalar curvature equation, depending on k£ € N large
enough, on P(F). Thus standard theory of elliptic partial differential
equations suffices to show that the solutions found in Theorem B are
smooth.

Roughly speaking, the idea behind Theorem A and Theorem B is
as follows: Suppose that there is a family of Kahler metrics, depending
on k € N, on P(E) with constant Hermitian scalar curvature. Then it
is natural to expect that the “limit”, as & — +oo, induces a Kahler
metric on M with constant Hermitian scalar curvature, and induces an
Einstein-Hermitian metric on £ over M. However, to establish The-
orem A directly, we will inevitably encounter the fact that the CHSC
equation, which depends on k£ € N, will tend to become degenerate
as k — 400. On the other hand, the “degeneracy speed” of the CHSC
equation is well understood. Thus we start with constructing sufficiently
good approximations for the solution of the CHSC equation, depending
on k € N, to “improve” the degeneracy of the CHSC equation. We are
successful in this attempt [9]. Actually, in [9], we have established the
following result:

Corollary A of [9]. Under the assumption [{] we assume further
that there is no nontrivial infinitesimal deformation of Kahler forms in
the Kahler class [war] on M with constant Hermitian scalar curvature.
Then, for each v > 0 and each large N € N, there exist constants
k.ny € N and Cy.yy > 0 such that, for k > k.ny, we have

w(—l+m+n) NW[(k_]2+m+n)

—1+m+n)! + Ng[k} A (—2+m+n)!
cY

< C('y:N) . k_fN+m‘

“—(—1+m+n)-ck-




468 YING-JI HONG

Here nE&y is the representative of —e(K) induced by the Kdahler form

N 504,
ke

NW[k] = oWjk] + i58¢0 +
=1

on P(E) with each ¢y being constructed via the Induction Scheme (in-
troduced in [9]). ||®]||cv is the CY-norm of  with respect to the Hermitian
form (metric) @ on P(E).

Now the next step is to show that the linearizations of the CHSC
equation, depending on k € N, at these approximate solutions ywy) are
“almost uniformly invertible” (effectively invertible). With these results
established, we then show that the nonlinear part of the CHSC equation,
depending on k € N, is effectively contractive, when expanded in a small
neighborhood around a sufficiently good approximate solution. Hence
a family of genuine solutions, depending on k& € N large enough, can be
found through the Contraction Mapping Theorem.

Most calculations involved in this paper are essentially direct but
rather lenghty (because we are dealing with rather nonlinear 4-th order
elliptic partial differential equations). We introduce certain notation
in Section II to make most expressions more effective and easier to be
handled with. Certain basic results, used in [9] and to be used in this
paper, will be proved in the Appendix. Notation of [9] will be retained
in this paper.

I. Notation and some fundamental results

To make this paper more self-contained we begin with some concepts
and notation introduced in [9].

Note that the Einstein-Hermitian connection A on FE defines one
smooth distribution #H of horizontal spaces on P(F):

T (P(E)) =V @ H.

Here V is the sub-bundle of T (P(E)) over P(F) consisting of tangent
vectors which are tangential to the fibers of 7 : P(E) — M. Let VI
denote the maximal sub-bundle of T™* (P(E)) over P(E) whose action
on H is identically zero. Then the decomposition T (P(E)) =V @& H of
T (P(E)) over P(E) induces the following corresponding decomposition

T (P(E)) = VI @ #* (T*(M))
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of T* (P(E)) over P(F). Thus we have the following decomposition
NT* (P(E)) =Cy & Cpm, @ Cumr

of A*T* (P(E)) over P(E). Here Cy = A*VI¥ and Cpy = A*#*T*(M).
Besides Cy, is the sub-bundle of A*T™ (P(£)) over P(E) consisting of the
mized components of A*T™ (P(FE)). Thus we have the following diagram

11 11
Cy Y AT* (P(E)) —2s Cy

Js.

Cm

of projection maps over P(F) such that id. = Il¢, & Il¢,, ® Il¢,, on
NT*(P(E)). Let I'(P(F) : R) denote the space of smooth R-valued
functions on P(F). We introduce one Hermitian form (metric) @ on
P(FE) by setting

=1, (5 Fu,. ) + T wu.

&«

Note that the derivation operator
d:T(P(E):R) — T (P(E) : T" (P(F)) @ R)
can be expressed as
d=dy +dy
in which
dy :T (P(E) :R) — T (IP’(E) R® V[*})
and
dy :T(P(E):R) — T (P(E) : R " (T*(M))) .

Let dj and d}; be respectively the adjoint operators of dy and dj; with
respect to the Hermitian form (metric) @. Then we have

A:d*OdZAv—FAM

in which Ay = d}, ody and Ay = di, o dpy. Similarly we have 0 =
Oy + 0y and 0 = Oy + Our. Let Ay and Ay be respectively the adjoint
operators of

e — HCV(%FHL*) Ne

and
o — Trwyr N e

469
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on P(E) with respect to the Hermitian form (metric) @. We will use
the symbols (BG)V and (88) s to denote respectively Il¢, o (88) and
o (58):

(90), =Te, o (90) and (90),, =TI, o (99).
Similarly we use the symbol (58)m to denote Il , o (38):
(90), =T, o (90).

Then we have the following results.

Proposition I.A. Given f € T (P(F):R) we have the following
equalities

iAo (99), 7= YL
and A
iAo (99),, f = 22

Proposition I.B. Ap; 0 Ay = Ay o Ayy.

These results will be proved in the Appendix of this article.

Since the restriction of (5= Fp,.) on each fiber of # : P(E) — M
is simply the Fubini-Study Kahler form, there is a well-defined vector
bundle W over M whose fiber over each point z € M is the eigen-
space of the lowest non-zero eigen-value of the (Fubini-Study) Laplacian
on 7~!(z). On the other hand, integration along the fibers maps one
smooth function on P(E) onto one smooth function on M. Thus for
each smooth R-valued function f € I' (P(E) : R) on P(E) we have

f=a(f)oolf)@alf)
€

in which (6(f) :0(f)) € T (M : R) ® (M : W) and the restriction of
&(f) on each fiber #71(2) of & : P(E) — M is orthogonal to both
the space of constant functlons on 7 '(z) and the space W,. Here
I'(M : W) is the space of smooth sections of W over M, and W, is the
fiber of W over z € M. Note that the smooth distribution H defines
one connection V* on the fiber bundle 7 : P(E) — M preserving the
bundle W over M.

Now we state an important result about a special kind of quadratic
combination of traceless Hermitian quadratic forms.
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Proposition A of [9]. Assume that C* and P(C") are respectively
endowed with the standard Hermitian metric H = ) 0np8 - Wq - Wg 0N
C™ and the Fubini-Study metric on P (C™). Then for any traceless Her-
mitian quadratic form q =) qag - Wo - Wg on C* (with ) ¢,y = 0) the
function

(3 0ap - Wa - Wp)”
(47 + 27n) - (X qap - Wa - W5)°
(3 Gap - wa - wg)*

on P (C™) is orthogonal to the eigen-space of the lowest non-zero eigen-
value of the (Fubini-Study) Laplacian on P (C").

This result can be expressed equivalently in the following way:

Let wp.g = —%58 log H be the Fubini-Study Kdhler form on P (C").
We define the function Q (% : %) on P(C") as follows:

(—14n) (—=34+n)
S

Q(F : 1) - iy = 109 () Ni00 () A sy

Then the function

~(ern ) Crone )+ QB

on P (C") is orthogonal to the eigen-space of the lowest non-zero eigen-
value of the (Fubini-Study) Laplacian on P (C").

Actually for any traceless Hermitian quadratic form q = ) qag - Wq -
wg on C" we have

rne ) (e §) QU ) + i S
=—7-(—4mn-id. + Ap.s) (£ &)

Here Ap_g is the Laplacian operator induced by the Fubini-Study Kahler
form wr_g on P(C"). Note that the constant function 4% - > qap * qga
on P (C") associated with ¢ =), qop-wa-wg only depends on the unitary
group orbit of q.

Remarks. Some remarks about this Proposition now follow.

e Note that the eigenspace of the lowest non-zero eigen-value 47n of
the (Fubini-Study) Laplacian on P (C") simply consists of the quotients
of traceless Hermitian quadratic forms on C" by the Hermitian metric
H =) 6ap - wq - wg on C*. It is well-known in Kéhler geometry that
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this eigenspace represents the tangent space at H =) 043 - wq - wg of
the moduli space of Einstein-K&hler metrics on P (C").

e Though in this Proposition we only consider a special kind of
quadratic combination of a single traceless Hermitian quadratic form
g on C" it is obvious that similar result holds for the same kind of
quadratic combination of two possibly different traceless Hermitian qua-
dratic forms on C". We can infer this easily by considering the infinites-
imal deformations of q. This simple corollary will be referred to as the
infinitesimal version of the Proposition above.

e We now indicate the power of the above Proposition (and its in-
finitesimal version) briefly. When dealing with the CHSC equation,
depending on k£ € N, on P(E) we often encounter some special kind of
quadratic combination of sections of W over M. At first sight it may
seem that such kind of nonlinear combination of sections of W con-
tributes nontrivial sections of W over M. However, in reality, such kind
of (nonlinear) quadratic combination of sections of W over M only con-
tributes the zero section of W over M as indicated by the Proposition
above. It is this interesting phenomenon which makes the Induction
Scheme developed in [9] possible.

Now we set

0, = M
m!
and
i —14n
st (g (£ )
C(=1+m+n)! (=1 +n)! m!

Let A™#*T* (P(FE)) denote the trivial bundle over P(E) consisting of
differential forms on P(E) of maximal degree. Then we can identify
functions on P(F) with sections of A™2*T™* (P(FE)) over P(E) through

the following map
f—f-Q.

Similarly we can identify functions on M with sections of A™#*T™* (M)
over M through the map

fr— - Qu.

Here A™#*T™ (M) is the trivial bundle over M consisting of differential
forms on M of maximal degree. Besides functions on P(E) which are
constant along the fibers of 7 : P(E) — M will be identified with
functions on M.
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We now recall the main result of [9] briefly. Let

U *
ow[k] = (%FHL*> + k-7 Wpr

and ,H,) be the Kéhler metric on P(E) induced by the Kahler form
ow[x]- Suppose that, for each k € N large enough, wy) is the (possible)
Kahler form (lying in the Kéhler class [,wy]) on P(E) which carries
CHSC. Let K be the canonical line bundle of P(E), and &) the repre-
sentative of —e(K) = e (K*) induced by wy on P(E). Then the CHSC
eqaution for wy is as follows:

—2 -1
(- 2hmedn) L Thmen)

[+ =(=14+m+n)-c L

SN S ) (Cl+m+n)l

Here the constant ¢, depending on k£ € N, is determined topologically
by the following identity:
(—2+m-+n) (—1+m-+n)

e “Ik)
5 - —1 ey —M

Let Kjs denote the canonical line bundle of M. It is easy to see that ¢
admits the following asymptotic expansion:

(=14+n)-n m —e(Kuy)

1
A Sl L LB : YO (K.
T l+m+n)  k (-1+m+n) W (57)
Here the constant 7e£)KM ) — B g defined through the following
M Whr
equality

/ —e(Ku) wiy :/ —e(Kum) A wg\;um)

Let Fp, be the curvature form on M induced by the Einstein-Hermitian
metric on F. Note that the Einstein-Hermitian condition implies that
i n -1+
(%FHL*) A w](\/f ™
(E-H) + (%FHL*)(_HM A wgv;Hm) A ﬁ*trace(%FHE)
=0.
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Let Hjs be the Kahler metric on M induced by the Kahler form wj,.
Since Hp is Einstein-Hermitian it can be checked directly (using the
Special Coordinate System introduced in the Appendix) that

%58 logdet oHpp) =n - (%FHL*) + ﬁ*trace(%FHE)
+7Vr*trace(%FHM) + Oc,, (k_l)
+0c,, (k7%) + Oc, (k72).

Here Fy,, is the curvature form of the holomorphic tangent bundle of
M induced by the Kahler metric Hy on M. In [9] it is shown that the
asymptotic expansion

zaagbg

K] + 190¢o + Z

of the (possible) solutions, depending on k& € N large enough, of the
CHSC equation on P(E) can be uniquely determined (solved) by choos-
ing the R-valued functions ¢y and ¢; on P(F) satisfying the following
conditions:
o(¢o) =0=05(do) and &(¢1) =0

so that ¢g = 6(¢o) and ¢ = 6(¢1) ® 0(¢1). Here each ¢y is a smooth
R-valued function on P(F). Because this asymptotic expansion is in-
ferred through expanding the CHSC equation for wy;) in the powers of %
Corollary A of [9] then follows directly from the ezistence result of the
asymptotic expansion of the (possible) solutions, depending on k£ € N
large enough, of the CHSC equation on P(F). Because of this we will
call, for each N € N,

233¢9

NWiK] = K+ i00¢g + Z

an approximate solution for the CHSC equation depending on £ € N.
We will use , Hp to indicate the Kéhler metric on P(FE) induced by
the Kéhler form , wp.

Now we introduce certain linear operators which will appear nat-
urally in the next section. We define the operators Qv (e : ¢1) and

Qm (® : $1) on P(E) by setting

e «\(—1+n) m
oy @i B AWl
: = (3+)
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and

e(L*)(_1+")Awm
Qm (Y : 1) - B ES T I
L p )

=i (90),,9 N (99),, 61 A ot

Vi € I' (P(F) : R). By the infinitesimal version of Proposition A of [9]
we have

(1.3) o (—2ge. 280 4 g (0 (1) 1 1)) =0

(1.2)

Vi) € T'(P(F) : R). Besides we define the operator Qs (e) on P(E) as
follows:

Qur (1) - e (L7) 1) A 2l
(—24m)

= e (L) A B N (00) 90 (i (0) 5 bo + Tleye (L))

Then we have the following simple result.

Lemma I.A. Assume that f € T'(M : R). We define the smooth
function Qur (f) on P(E) as follows:

< e(L*)(71+")Aw% e(L*)(71+")/\w(72+m)

QM (f) : (_1+n)!.m! = (_1+n)!.(_2_]\|:[m)! A (58)M f/\
(n-Ic, e (L*) + i trace(5= Fp ) ).

Then for ¢ € T (P(F) : R) we have

AVQ+WW(T/J)) :QM(&(¢))

This result can be expressed equivalently as follows:

~ wm w(_2+m) L= .
BB e (LTI AT = P A1 (00) 3,6 (DA

(e (L) + e (L*) 71 A fr*tmce(%FHED

Vi € T (P(E) : R).
Besides for 1 € T'(P(E) : R) we have

AvQu (6 (¢)) €T (M : W).
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Proof of this result can be found in the Appendix of this article.
Lemma I[.A will only be used in the next section.

Now we discuss the relation between the invertibility of Ay on
I' (M : W) and the simplicity of E over M. Let d4 denote the exterior
derivation operator acting on smooth Hom (E : F)-valued differential
forms on M induced by the Einstein-Hermitian connection A on E. Let
d* denote the adjoint of d4. Then by the Kéahler identities (for sections
of Hom (E : E) over M) we have

djoda _

azoaéz 2 :_zo As

because the wy/-component of the curvature form of Hom (E : E) is zero
by the Einstein- Hermitian condition. Here 04 and 04 are respectively
the 0-component and the d-component of d4:

Thus E is simple if and only if the kernel of djod onT' (M : Hom (E : E))
only consists of transformations of E of the following form

c-id.

where ¢ € C.

Now we discuss the action of Ay on I'(M : W). Let H denote the
standard Hermitian metric on C". Note that the space of quotients
of traceless Hermitian quadratic forms on C" by H can be naturally
identified with the space

i-su(C": H)

of traceless linear Hermitian transformations of C"*. Actually the stan-
dard Hermitian metric H on C" is preserved by SU (C" : H), and we
have the following Lie algebra decomposition

s[(C")=su(C":H)®i-s5u(C": H)

of s[(C™). Since the Lie algebra of PGL (C") is naturally isomorphic to
s[(C"), the above Lie algebra decomposition is thence valid for the Lie
algebra of PGL (C"). Now we note that for s€ ' (M : W)

DoAys=dyodaPs.
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Here ® : W — i-su(E : Hg) is the natural isomorphism between the
bundles W and i - su(E : Hg) over M as described above. Thus E is
simple if and only if the kernel of Ay on I' (M : W) is trivial.

Now we introduce Sobolev spaces. Assume that

ocT (P(E) L T (P(E))) :

Here 6§ € Z and 6 > 0. We will use the symbol ||| to indicate the
L? norm of e with respect to the Hermitian form (metric) & on P(E).
Besides we use V to indicate the covariant derivation operator

v r (BE) : o°1" (P(E)))
— @p ( - ( Q'T* (IP’(E))) ®T* (P(E)))
so that for s € @ r (P(E) : T (P(E))) we have
0

(Vs)x=V_s

Vx € T (P(E)). Assume that ¢ € T'(P(F) : R). Given v € N we define
the H"-norm of 4 as follows:

[l g = N9+ VP + -+ (V79[

Thus HD! is the Sobolev space obtained by completing the space
I (P(E) : R) with respect to the HY-norm.

Now we consider the infinitesimal deformation operator Vj; for the
constant Hermitian scalar curvature equation on (M : wps). Note that

( 1+ (=14m)

Vire =2 )m(aa) Sue g L) s £0(00) 0

_ ol T2tm) _ .
+ % N (86)M o Ait*trace (5= Fp,, ).

Standard theory of elliptic linear partial differential equations shows
that

1l g < C - [Vafl
Vf € T'(M : R) satisfying the normalization condition

/Mf-QM:o.

Here C' > 0 is one constant independent of N and k.
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II. Linearizations of the constant Hermitian scalar
curvature equation at approximate solutions

Our goal in this section is to establish (I1.12) and Proposition II.A.
These results will be used in the next section to establish aprior: es-
timates for ¢ € I'(P(E) : R) satisfying the normalization condition

/ 1 - Q = 0. Most efforts in this section are devoted to the simplifi-

cation of the expression of the linearizations of the CHSC equation at
approximate solutions. Before proceeding we introduce some guidelines
for the simplification process. Two linear partial differential operators

P[k]E[AVO( Am-m-id.+ Ay) + Ay o B 4 BM o Ay 4 BM o BM

and
1 %Y

k-k Qu

are of central importance. Note that Py, when acting on the different
components of I' (P(F) : R) =T' (M : R)®dT' (M : W)@ ool (P(E) : R),
has different degeneracy speeds because P depends on the parameter
k € N. When Py acts on & o T (P(E) : R) we have at least L* esti-
mate, independent of k € N, as will be indicated in (II1.2). But when
Py acts on T'(M : W) the estimate we have, as will be indicated in
(IT1.1), does have degeneracy speed of magnitude O (%) So when deal-
ing with the linearizations of the CHSC equation at approximate solu-
tions any partial differential operator, with degeneracy speed of magni-
tude < O (%), must be considered carefully when acting on I' (M : W).
Similarly when dealing with the linearizations of the CHSC equation at
approximate solutions any partial differential operator, with degeneracy
speed of magnitude < O (%), must be considered carefully when act-
ing on I' (M : R).It turns out that when computing the linearizations
of the CHSC equation at approximate solutions two different leading
linear partial differential operators are found:

e When acting on I'(M : W) @ 6 o ' (P(E) : R) the leading linear
partial differential operator is k™ - M - Py,

e When acting on I' (M : R) the leadmg linear partial differential
operator is zk (—=2+m+mn)!- vi‘\’fl

It is exactly this phenomenon which makes the derivation of the
linearizations of the CHSC equation at approximate solutions rather
tedious: When considering the linearizations of the CHSC equation,
depending on k € N, acting on different components of I' (P(F) : R)
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attention to be paid to the various partial differential operators involved
is inhomogeneous — it is done according to the magnitudes of degeneracy
they carry.

eSome notation

It takes lengthy calculation to express the constant Hermitian scalar
curvature equation effectively. Here we want to introduce some notation
to simplify the expression of the linearizations of the CHSC equation
at approximate solutions. Suppose that U is one coordinate open sub-
set of P(E). Let T' (U : R) denote the space of smooth functions on U.
Then we can form the ring I' (U : R) [+] consisting of polynomials in
the parameter % with coefficients in T' (U : R). Note that the sub-class
of elements in I' (U : R) [£] with the zero-th order terms being nowhere
zero on U forms one multiplicative monoid. We will denote this multi-
plicative monoid by yM [%]

Now we elaborate on the genuine meaning of the symbol

07 (k")

introduced in [9]. Here Z is one vector bundle over P(E), and 6 € Z
satisfies 8 > 0. We start by treating the case 8 = 0. Oz (k‘o) is used
to indicate one family of smooth sections of Z over P(FE), depending
on the parameter %, such that over each coordinate open subset U of
P(E), Oy (kfo) can be expressed as the quotient of one polynomial in
%, with “coefficients” in I' (U : Z), divided by some element in M [%]
In our context, Z is usually related to some natural bundle over P(E)
whose transition functions are certainly independent of the parameter
%. Thus it is clear that Oz (k_o) admits formal power series expansion
in % with “coefficients” being globally defined smooth sections of Z over
P(E). Now, for 8 > 0, Oy (k_a) simply means k=7 - Oy (k‘o). We
also adopt the convention, as in [9], that when Z is the trivial bundle
R x P(E) over P(E) the symbol O (k%) will be used instead.

We demonstrate the ideas by considering the case where Z is the
trivial bundle Z = R x P(E) over P(F) related to the holomorphic
tangent bundle of P(E). Assume that ,Hp and , Hp) are respectively
the Kéhler metrics on P(E) induced by the Kéhler forms ,wy and
ywik]- Then det (H) and det  Hpy are essentially not functions on
P(E). But

det NH (k]
det oH[k}
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det N H[k']

is. Thus m

is one element of the form Oy (k_o). However it is

usually impossible to express % as the quotient of globally defined

k
functions on P(E). This example is[ éentral to our consideration: all the
other cases considered in our context are similar to this situation.

Similar consideration applies to partial differential operators on P(FE).
Suppose that U is one coordinate open subset of P(E). We will use the
symbol 7®? to indicate the class of linear partial differential operators
on U, acting on functions, with the zero-th order terms being identically

zero. Thus for D € U’D@ we have
D(f) = D(f + constant)

for any smooth function f € T'(U : R) on U. The symbol ‘11]90 is then
used to indicate the sub-class of linear partial differential operators in
o with order < d. ‘[1]@@ [%] is thus the ring of polynomials in % with
“coefficients” in ‘5@0. We will use the symbol ap? (kfo) to indicate
one family of linear partial differential operators acting on functions on
P(FE), depending on the parameter %, such that, on each coordinate
open subset U of P(E), D’ (k_o) can be expressed as the quotient
of one element in ‘[1]@@ [%] divided by some element in yM [%] Be-
sides it is always assumed that ap? (kfo) admits formal power series
expansion in % with “coefficients” being globally defined linear partial
differential operators on P(E). Actually, in our context, b (kfo) al-
ways appears as some natural partial differential operators acting on
functions related to certain natural bundles over P(E) whose transition
functions are certainly independent of the parameter % Now, for 8 > 0,
the symbol ¢D? (k‘a) will be used to indicate one element of the form
k04D (k70).

Note that the class of linear derivation operators along the fiber
directions of the fiber bundle 7 : P(E) — M is closed under the Lie
bracket operation. We will use, for each 6 > 0, the symbol dD?/ (k_a) to
indicate one linear partial differential operator of the form ¢D? (kfe) in-
volving only derivation operators along the fiber directions of
7:P(E) — M.

Here we indicate a simple fact which will be used frequently but
without being mentioned explicitly in the rest of this section: Given a
function f € T'(M : W) the L? (or L>®) norm of dD?, (k7%) f on each
fiber of 7t : P(E) — M is controlled by the L? (or L°) norm of f on the
same fiber in a uniform manner over M. Because of this we sometimes
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write (less precisely) 2D? (k7%) o o for 2pY (k7% o dD?/ (k=) 00

eExplicit expression of the linearizations of the CHSC equation
at approximate solutions

Assume that 1 is a smooth R-valued function on P(F) satisfying the
normalization condition

(N) /P(E)zp-Q:O.

Let
NWik) < - P >= NWik) T 100

and Hp) < t-4 > be the Kahler metric on P(E) induced by
yWk] < t-1 >. Then we have

4
dt

(( w o <tw>) TN (L o<t 80 log det H[k1<t'¢>)) ‘t:O

= vSp ()
in which

“34mdn) , .a -
v O] () =(-2+m+n)- Nw( St )/\2831/;/\ %Balogdet ~Hig

0
& (det  Hyy <t-¢ >)\t:o>

(—2+m+n) L A
(IL.1) + vy A 500 ( det L Hy,

—ck-(—1+m+n)- Nw[(k_]2+m+n) A i00p.

Note that S is the linearization of the CHSC Equation af the ap-
proximate solution  wy.

In the following computation the representative (%FHL*) of e (L*)
on P(E) will be fixed. Thus e (L*) will be identified with (5= Fy,.) when
there is no confusion.

We will now compute those terms on the right-hand side of (II.1)
more explicitly. Note that

(I12) logdet  Hig) = logdet oHjg) + & - (252 4 2590) 4 0 (172)
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and
g (det y Hyy <t-9>)|,_,
det NH[k]
-1
= (24 LQuwean) (141252 10 (k)

(11.3) A (2B 1 Qu ()

_i_k_%k *AQMl/) ( CQEM) +AA/21¢0>

+ DY, (k%) 9 + 2D (k73) 9

T [(k]2+m+n)
= —n(- E24maml | peyzem) m
— |
Cn(e14n) . Z2EmAn)!

(=1+m)!- (=1 +n)!

e (L*)(*1+n) A (K - wM)(fler)
(=2+m+n)!
(m =1t (=1 +n)!
e(L*)(72+”) A @

—n(=1+mn)-

(=1+n)

A (k - wag) O™

k

L eEy)  (=24m+n)!

F o CLlem (L)
(I1.4) e (L) A (- wp) O™

(—2+m +n)!

—n(—1+4+mn)- m

(e (L*) +1i00¢0)" A (k - wa) 2

(=2 +m+mn)!

_n(—1+n)-m.(_2+n)

e (L*)73M A -

A (k- war)™
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1 e(K -2 !
TR (wMM) ' (m! ;r—n;i;b;v
e (L) TH A (k- wp)™
+ K™ Opcomppmy (K7°) Awi
+E™ - Op24minm = (p(E)) (k7).

By using the equalities (II.2)—(I1.4) we can now express (II.1) more
explicitly. We introduce one linear partial differential operator

L : T(P(E) : R) — T (P(E) : AT (P(E)))

on P(FE) as follows:

L =S e(L) TP Akwnr) ™ 7i(80) |, A5 (80) |, log det o gy
s e L) T Ak THIA(9) | b5 (9) , log det o Hyyg
+ o e (L) T A (kwnn) TP A (80) | WA 580 log det o Hy,
+(( gizl;rzl)" e(L )( 2+")/\(k-wM) 2L (Agw

m—+n)! \(—24n m i A
R (L) k)" A (90),, (24
| _ _ i A
_1_% (L) T A (kwpr ) 1+m)/\ 3 M(
(=2+m+n)! (L*)( 1+n)/\(k WM)( 1+m)/\ i (58) (

?r\'—‘

T (= Tmy ¢ M

)

] L) (= i A A A
R e(L) T A k)" A g5 (09) ) (- S5L- S5 4Qu (wig) )

(IL5)

— n(=14n)- 5t e(L*) T2 A (bwar) " Ai(89) v

— ! — — -(a
= (=L et (L) T Ao T Ai(00) v

e( K — m-+n)! *\(— — (7
+%_m_ (MAJ/\[/I),(71(+T2L;_(7+1JZ'7n)!.e(L YT A (kwpr )¢ 1+m)/\l(33)M1/,

— n(=1+n)- SR e (L) A(k-wnr) 2T Ai(50) -

Then we find that
O (V) =Ly + By

(11.6) FEpp B e (LT AWl 4D (k72)
+ kM. e (L*)(—l-i-n) AWl - 4o (kf?:) ¥,

in which the linear partial differential operators B and &), bring-
ing I' (P(F) : R) to ' (P(E) : A™*T* (P(F))), are respectively defined
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as follows:

By =

(I1.7)

(IL.8)

G (g by o(Lt) WAL Ay

i(90) WA 5 (90), log det o Hiy

L (1) A (k)" Ai(30)  wn F5 (80) , (252 22420

+ o e (L) T A (kwnn) T A(80) | YA 5 B0 log det o H

ot G (2oL T AI(80), don

(k-war) T ™ Ai(00) | A 5= (89) |, log det o Hiy

— m-+4n)! *\(— n i(90 ¢ m 1
2L (o tn)ee ()P >Aw A= (89), ( )

— ! * 7 A
o) T A T ASL (99),, (257)

— ! —_ (A —
T T (14m)e(L7) “”W(%)M«sw(k-wm( thm A

= (99),, (2%2)

_ i(60 _
- n(—1+n).%.(—un).e(p)(*ﬂn)A%A(k-w)mm(aa)vw

o A R e(L7) ) Aloar) " i (39),

— n(= 1) 2 e (L7) I A (wnr) 1 2i(50),,

— n(71+n)-(71($% (=14n)-e(L*)(72MA

i(09) b0 A (k-wnr) T N(00)

e Ao Ay

st

(53) (Qm(¢¢1)+Q (w))

R e (L) "D Abwan)™ A

25 (00), [ 2245 (51 Sagen)

R (g pm)-e(L) AN ey (80),

Ay
m!-(—2+n)! 2 Y )

1.
k 2

— ! *
FetEmt o) T Ao T (00), (-4

e P (1) (L) T Allag) T A

i(90) ,,0A5=(00), (%.AAQN)

— ! —_ —
(L)L) T A G wa) A

ot i (d0), (25%)

2

B Ao A

b (30), (- 2525 Qv i)
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_ ) o (— _ i(80), 61 (80 A
L (1) o(L1) TP Aaoa) A OO O (Aye)

R (L) A (k) A (89),, (25
S (L) T AI(89)  doA(kwnn) TN (50) (2.

Since the detailed terms of those items on the right-hand side of
(I1.6) are still rather complicated, we need to simplify (II. 6) further.
So we compute the term %58 log det ,H[j involved in (IL.5) and (IL.7).
Note that

5 i
%8alog det oH[k] =n - (ﬁFHL*)

(11.9) + 7 trace (%FHE> + 7" trace <£FHM>

+Oc,, (k71) + Oc,, (k7%) + Ocy, (K72),

and # (58)Vlog det oHpy) induces the Fubini-Study Kéhler form on
each fiber of 7 : P(E) — M. (It is easy to establish (IL.9) using
the Special Coordinate System introduced in the Appendix.) Thus we
have the following results:

(IL7)  Byd = By + k™ - e (L) Awfy - DY (k) v
and
Syt =Lyt + k™ e (L) AWy - DY (K72) 1)

(IL5) + R e (L) T AT DY (K73 .
Here the linear partial differential operators

%[k} T (P(F) : R) — T'(P(E) : A"*T™* (P(E)))
and R

L : T(P(E) : R) — T (P(E) : AT (P(E)))
on P(E) are respectively defined by

%[Wﬁ :% e (L)) A (K - wpg) ™)

i (9 A
Nox (99)y, (%)
Ni (58)‘, P A i*trace (o= iy )

M) A [n- (00), 0+ o (00),, (242)]
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and

S[kﬂ/’ —km . % e (L*)(*lJrn)

LAy o (4 n g+ Avy)

m
N wiy

—I—AVA—?/J + ——Ayp + ——7/1

k™ e(K 2+m+n * 1+
+W sme (w]\]f) ) (71(+n)!-(7142m)! "€ (L )( " A

WS NG (80)

m —24+m+n)! o (—14n (—2+m)
+A - e - e (L) T AW

(IL.11) i (80),, v A 7*trace (5= F,, )

HE - S e ()T Al

G (252 A Qi)

m —24+m+n)! —24 - (5
- oy whr ) A (89)

(e (L) + e (L*) 1) A ﬁ*trace(%FHE))

Hence we have established the following simpler expression of | Gy

Sy =Ly + By + Cyp
(I1.12) FE™ e (LT AW ADY (k2) ¢
FE e (L) AT DY (K73) g,

eConcise expression for E[k} + %[k} + €

Now we discuss some special properties of the expression (I1.12) in
order to understand , &y better. We start by simplifying the expres-
sion (I1.8). We have, by applying the Einstein-Hermitian condition to
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the 4-th item on the right-hand side of (IL.8),

(=24m)-e(L7) THMNI(90) grnwiyn L (80) (B4Y)

e(L*)(71+")Awm .

()

2V (Anreh)

AL THN(89), ol A (99), (25)

m (—24m+n)! \(—14n m A m (¥
C[k}@b = i_k.%.e([/ )( 14n) A _J(W*,QMC‘/)))
E™ 2+m+n)! * 1+n A
A R (L) 1) Ay G [ A
E™  (=2+m+n)!
ok ot (= !
k™ AM[fr*trace(ﬁFHE)].(72+m+n)!.
k-k n m!-(—14n)!
m 1 A A
i T e L) T g S0 S
™ (=24+m+n)!
TNy A
m4n)! <\ (— A
(II&) +kk % e(L*)( 1+n)/\wm.7M

E™ (=2+m+4n)! «\(—14+n m
R R ey R CA ) ) nwy

! *
o e(L)" Aw

PET (=2mim)l
k-k (—24m)!-n!

+iE

Thus we have

c

L (-2 2EY 4Oy (ign) ) +
Av¢1 AM(Avlﬁ)
Ir 2

A (00),, (7%

2

nee(L) 1N (39) , by A (39) ,, (BFY).

2

W) = (-2 4m ) 4—V(Qm“ﬁ¢l + Qur (1)
AR (<24 m 4 m)! ( Aﬂg%)-ﬁ_g(—%w)
_% AM[TF tra.ce( FHE‘)] ( 2+m+n) AXAM"p
AL (24 m 4! Ay Ay (—Agﬂﬁ)

(IL13)  +&2. (—2+m+n)!-ﬁ—y(—AVQ¢l-%JFQV@/;:(;SI))
Hip (2 men) - 250 G (840
+i - 2DV (K70) Anp + 5 - 2DV (K70) Avep

and, by applying the Einstein-Hermitian condition to the right-hand

side of (I1.10),

%[k} m  (—24+m+n)!
T(lﬁ) =kr . C2min)
(I1.14)
+

- Apsit*trace (#FHE)

Ay o (=Ayyp +4m-n - )
B2 2DD (k0) (—dm-n -4 + Ayep).

487
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Since V7 preserves the spaces 7' (M : R) and T' (M : W) we infer from
(IT.11) the following results through Lemma I.A and (I.3) respectively:

~ E m O
& (%) =5 (=24 m + ) 2L

k
50 2D (k7)o (v)]

(I1.15) ;
rro 2D (k70) 6 ()]

i (2 m ) Qur (6 (4))
(IL16) +5 o [2D) (K70) 6 ()| + £ o [2D° (570) o ()]
+ig o [P0 (570) & (9)].

Let Py denote the linear partial differential operator on P(E) defined
as follows:

A
P[k]f = |:AV o (—4:7'(' -n-id. + AV) + AV [¢] kM
ANY; Ay Ay
+ e v+ e X
Vf € T (P(E):R). Since V¥ preserves the spaces #*I' (M : R) and
I'(M : W), from (II.11) we obtain that

<

€
M
s m —24+m+n)! .
( 4] >:k .%.pmg(q/,)

k™ (=24+m+n)!
+ k 4

5 [Avo (~2ui A oy (o () 1 gy))]
K 5 [4DV’V (RE (zp)]
K25 [2D0 (k) o ()] + 2. 5 [2D (K0) 5 ()]

(IL.17)

through Lemma I.A. Besides we note that

B By m _0\ ~
(IT.14) Y BotW) _ k4 (570) 5 (4).

)
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In order to summarize the results established so far we introduce some

notation. We use the symbols 2pY (kfo) * ZDQ, (k*O) and ZDQ/ (kfo) *

2pY (k_o) to indicate respectively the finite sums of the following forms
200 (k%) o 2D}, (5~0)

and
2DY, (k) 0 2D% (k7).
Then, by (I1.13), we have
o () =456 | 20" (67°) = 2DY (K7°) o ()]
&

2D0 (k-9) + 2DV, (k~0) & (1/;)]

+ w|?r
|7 ?r|a- Ea
3

~| 3

(11.18)

+
B
3 a-|
Q>
e N
-
s
=
N—
>
g
&

_l’_
7
&

Q>

Finally, an application of Lemma I.A to (II.13) yields:

o (S42) k2 (2 m )l Qu (6 (4)
A [21)@ (k=) = 2D¥, (k- )o(w)}
+E7 5 2D (K70) o (9)]
+ir o 2D (57°) 5 (4)]

(IL.19) g o [2D0 (k) 5 2DY (k%) 5 (4)
o [2D0 (k%) Awry]
+E2 o [2DY (K70) Ayy]

and

5 (C[g¢) =k . 512D (k) « 2D° (k°) 0(¢)}

+5 -6 [ 2D (K7°) « 2D (°) & (9)]
5 [2D0 (570) « 2D (7)o ()

(11.20) +iz 0 |2D7 (k70) « 2D}, (kio)é(w)]
+ 5 [2D0 (k0) Ay
+E2 .5 [2D% (k7°) Ayy]
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We can now summarize these results established so far in the following

Proposition II.A. Assume that ¢p € T (P(F) : R). Let

_ L B, O
Pm=—q*+t4q tq

Then we have
o (P[k}@/’) —Em . w AM (87r n-o(y)+ ATMU (@/J))
+E 2 (=2 +m 4+ ) Qu (6 (%))
+5 o [2DD (k70) & (1)
+ 5 6 [2D0 (k70) o ()]
+or o 2D (k70) 6 (¢)
(IL.21) + 5o [1DY (k) & ()]
+E [21)@ (k7°) « 2DV, (k°) 5(#})]
o oL 80
+E2 .0 [2D% (k70) Apy]

8m
(=2+m+n)!

LR
k 4

5 [Avo (-2 2 L gy (0 () : 90))]
+5 5 [4DY () & (4)]
+E G [_ZDO’ (k%) o ()]

& (Pyyp) =k™ - (=2+m4n)! - Py ()

11.22 +E 5 [2p0 (570) & 2D
k
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Moreover,

6 (Pup) =57 (—2+m+n)!- ngy)
L D0 (+) o )]
[2D" (k7°) & (v)]

D (K0 5 ()]
200 (570) + 2D} (k7°) o (4)]

)
)

R‘|
B
Q»

(11.23)

+
=%
Q»

+
7
> 3
Q»

2 (k°)  2DY (k°) & (4)]

200 (k%) Ary]

[2D° (K7°) Avy).

x ;_w
| 3 a-| 3
Q>

+
o
>

Q»

_l.
7%
> 3
Q>

Here Py is the linear partial differential operator on P(E) defined as
follows:

Pyf = |Avo(—4m n-id. + Ay) + Ay o BM 4 8M o Ay  BM o Ba | ¢

Vf € D (P(E) : R).

III. Estimates

Our goal in this section is to establish apriori estimates (Proposition
III.C and Corollary III.C) for ¢ through fundamental results of the
theory of elliptic linear partial differential equations. Our derivation is

based on the effective expression of % established in the last section:
Proposition II.A and (I1.12).

Convention. In this section C' will always be used to indicate a
positive constant independent of k € N.

Let V'V and MV be respectively the fiber-directional component
and the horizontal component of V so that

V="ve Mv.

We define f‘]f] V and )V as follows:

5l

M
5\
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and ;
_V vV _V M

Proposition IIL.A. Let Py, denote the linear partial differential
operator on P(F) defined as follows:

Py

= |Ay o (=4m-n-id. + Ay) + Ay o BM + 8 o Ay, +AMOATM]¢

Vi) € T'(P(E) : R). Then

le@ y 19, [Mve? vow)]

(TTL.1) Ve fve jivo w)|

+H%vo%vo%vo%vaw

< C-lo (Puy) |l
and
16 ()| + || Vo (v H+H ° Vo (¥)]
(II1.2) + | H
+HkV°MV°[ H
<C\b )|

Besides for 1 € T' (P(E) : R) satisfying the normalization condition

/ ¢,9_0¢¢/) =0

we have the following estimate
o () + [ Ve @) + || YV o Mve @)
(IT1.3) +[[MV o MV o Mys (y)
+ HMVO MgoMyo MV@'(’I/))H
<0-[[ao ).
Here

( 1+
(—1+m)!

(=14m)

Ve =24 Azﬁmxw%%3+nrEg%Q-TTEE—AzﬁmLMO
24+m)

( _ .
—i—% Ni (aa)M o Nit*trace (3=Fi,,)
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15 the infinitesimal deformation operator for the constant Hermitian
scalar curvature equation on (M : wyr).

Proof. (I11.3) follows from standard theory of elliptic linear partial
differential equations.
Note that Ay and Ajs preserve the decomposition id. = 5 ® o & 7

Ay oo D Ayooc®DAyod =60 Ay DooAy daooAy
and
Ayod®Apyooc®Apyod=60Ay®oolAy ®DFolyy.

We will use these results implicitly in the following derivation of (III.1)
and (III.2).
To show that (III.1) is true we note that

(ITL.4) o (Puth) = (87r ‘n-o () + ATM) o AL (1),

Standard theory of elliptic linear partial differential operators shows
that

[

(TTL.5) et el |17 0 4vs| < o - || 5

Vs € T'(M : W). On the other hand, by the Stokes’ Theorem we have

< (87rn-id.+ATM)s:s>:87m- <s:8>
(IIL.6) o
+ < [k]VS: [k]vs >
and thence, by the Schwarz inequality, we have
. A
(IIL7) Is]| + H f‘,ﬁwH <C- H<87r-n-zd. + TM)SH
Vse I'(M : W). Now using the Stokes’ Theorem again we obtain
< Vo gVs: Ve [jVs >= < {IVs: {IV o iV o [iVs >
=< [Vs: [iVo Jivie fivs >
+< Ws: [ §Ve MV o Mvs >
(IT1.8) =< %V* o %Vs: %V* o %Vs >
+ < f\,g‘[]Vs: {%V*: %V] o f\,g‘[]Vs>
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Vs € I'(M : W). Here %V* is the adjoint of %V with respect to the

Hermitian form (metric) @ on P(E). Thus, by the Schwarz inequality,
2
< HVo §19s: JVe Vs ><C- < Spts: Bps > +C - | s
2
(TTL.9) <C-|| (87 n-id.+ Sp s
2
+C-|s|*+C- H %VSH
2
<C- H<87r-n-id. + ATM)SH ,
and thence
(LIL10) ||s]| + H f‘,f]vSH + H MV o fk‘ﬁvSH <C- H(sw ‘n-id. + ATM)SH

Vs € T'(M : W). Using (I11.5) and (II1.10) we then obtain (III.1) via
(I11.4).

Now we establish (II1.2) through the same process as above. We will
use the following inequalities:

(IL.11) I5(II* < C- < VVa(f): VVa(f) >

and
(IT1.12)

NI+ |V Ve < C- < (~dmn-id. + Av) 6 (1) : 5(f) > .
By the Stokes’ Theorem we have
< (Av+28)a()  5(f) >= < VVa() : VVa() >
+ < [AVa(f) : jva(s) >
and
< [(—47m-id. +Ay) + 2l 5(f) 5 (f) >

=< (—4mn -id. + Ay)a(f) : 6(f) >
+ < Ve : fva(f) >

Vf el (P(E) : R). Thus, using of the Schwarz inequality yields
loll+ [V o5 + || 7|

(IT1.13) <C. “(AerATM)&(f)H
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and

1+ 1VVa) | + | fva |
(IT1.14)
<C. H[ —dmn-id. + Ay) + TM}&(f)H

Vf e T'(P(E) : R). Now by the Stokes’ Theorem again we obtain

< Ve }Va(f) [k}V k ]Va(f)
kV (f): ok VouVa(f) >
mVa(f): []V o Va(f) >
[}Va(f)‘ [[k]V*: Uc]V] mvalf) >
=< [k}V*o k) Va(f): Ve wVa(f) >
< wVelf): [V : wV]ewVa(f) >
Vf eT (P(E):R). Here [;jV* is the adjoint of [V with respect to the

Hermitian form (metric) w on P(E). Thus by the Schwarz inequality
we have

(1T1.15)

< [k}Vo k ]V&(f) lk ]VO [k }V&(f)
(IIL.16) <C. H (AV + AM) H
+C - wve|’
Hence, using (I11.13) and (IT1.14), we get
6N+ | | Vo] + |V e wVals)|
(IIL.17) AL
<c-|(av+2)a()|

and
1A+ || w Ve + || Y o mVelr)|
(I11.18) .
<C. H[ A on-ido+ Ay) + TM}a(f)H

Vf eT (P(E) : R). Since

& (Pugv)
(I11.19) [Avo 47r~n~id.+Av)+AVA—M+A—MAV+ATMATM]&(¢)
[ —Am-n-id. + Av) + ] [Av+ ] ()

+4rm - m - BMG (),
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we deduce from (II1.17) and (III.18) that

16 (D) + || 1V (@) + || gV o Vo ()]
+wVe wVe wVe @)
(IIL.20)  +||wVo Ve mVe wVe @)

< C-[la (Bu) | +C - || %pea ()
Vi € I' (P(E) : R). Thus (II1.2) is true once we have shown that
(TI1.21) |46 )| < ¢l (Pagw) |-

But this follows from the following result:

< (Pyyp) : Ava () >
=< (—4r-n-id. + Ay) o Ay (¢) : Aya () >
+ < IV 4+ oAva () : JiVoAva (y) >
(I11.22) + < WV +0AvE () 1 [V 0 Ava (¢) >
+< V'V o MG (y): YV o BMG (1) >
>< (—4m-n-id. + Ay) o Aya (¢) : Ayo () >
+< YV MG (4h): YV o BMG (y) >

and the Schwarz inequality. q.e.d.

By standard theory of elliptic linear partial differential operators
and Proposition III.A we have the following obvious result.

Corollary IIL.A. Let Py denote the linear partial differential op-
erator on P(E) defined as follows:

Py

= AVO(—47T-n-id.+Av)+AVOATM+ATMOAV+ATMOATM]¢
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Vip € T'(P(E) : R). Then for v € N we have the following estimates:

HloT(Ay + A Il + 11 Vol Ay + Au) "yl

1
+ o MY MVa[(Av + Ay) 4|

(I11.23) +|| Vo fw]vo fw]va [(Ay + Ap)7 9]
+ H ASTANY ]Vo Mo [(Ay + Ay’ ¢]H

<CM o [(Av + Aw) o Py |

and
16 [(Av + Anr) " 9lI+ || 1V [(Av + Anr) 7 4]|
+ | | Ve Ve [(Av + Aun) 7 9] ||
(T11.24) + H K Vo Vo Vo [(Av + Ap)? H

+ | m Vo ]VO[ Vo Ve [(Av + Am)" ]|
ChL |5 [(Av + An) o Py || -

Besides for ¢ € I' (P(E) : R) satisfying the normalization condition

/ 1/;-Q:0<:>/ g(y)- Q=0
P(E) P(E)

we have the following estimate:

o [A% ]|+ [ Ve (AL + (| Ve Ve [AT 4] |

(IIL.25) +[|MVoMVo My [AY ]|
+[[MVoMVo Myo My (AT ]|
< chl HN (q/,)H,
Here
Ve _L(u(l:n)). N (aa)M A4A7lr. +m- 6(5]\34) . ‘("5\41::)), At (33)M o

( m) _ .
+% At (aa)M o AT*trace (ﬁFHM)

15 the infinitesimal deformation operator for the constant Hermitian
scalar curvature equation on (M : wyr).
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Now we derive estimates for the elliptic linear partial differential
operator

~

Sy, B, o
Q QO Q0

based on Proposition II.A and Proposition III.A. We have the following
result.

Proposition ITI.B. Assume that ¢ € T' (P(E) : R) satisfies the nor-
malization condition

/ w-Q:0<:>/ () -Q2=0.
P(E) P(E)

Let ||||¢]|]] be defined as follows:

I =57 - 16 ()]
+ i | MV @) + 5% [ MV e MVe (4)]
+E [ MV o MV o MY ()|
+E | MV o MY 0 MY 0 MY (y)
+EE o D)+ 5 - || MV (9) |
-I-% . HMVO MVU(lﬁ)H

(ITL.26) [ 4V 0 iV o Vo ()

R H MVo Mo Mo MVs (¢)H
+E™ - 16 ()| + || g Ve ()]

+E™ [V o Ve (@)

+E™ - || gV o 1V o Ve (4)|

+h™ - |V o mV o Vo Ve (¥)|-

Py =

Then there exists ko € N such that for k > ko we have
(I11.27) Il < C- [Pyl -
Here the constant C > 0 is independent of k € N.
Proof. Note that
VVoVVo Vo VVs (1) =Y Vo VVo VV6 (¢)
="Vo V6 (p) = VV6 () =0
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and

[YVo Vo V'Vo "Vo ()| +]" Ve Vo VVo(¢)]
+[|"Ve "Ve )]+ "V )
<C-lo @)l
These results will be used implicitly in the following derivation of (II1.27).
Similar results are valid for the covariant derivatives of 6 (1) and o (%).
Besides we will use the symbol Cy to indicate a positive constant inde-

pendent of k € N. Here 6 € N.
By (I1.23) and (II1.3) we have

(2s)  llle () Il < €y - Wbl f@IL 1 ¢yl (Pgy) |-

By (I1.21) and (III.1) we have

lllo (@) [[I| <Cs - &2 2l
L. |H|¢|H|+C o ()|

<Cy-|lle () |l + Cs - H' il
+Cs - ||o (Ppyy) || -

(1T1.29)

Considering the sum
2-Cy - (II1.28) + (II1.29)

leads to

e @) 11+ llllo () 1l <Cs - ||& (Pryw) |
G o ()| + 0 131

Now by (I1.22) and (IIL.2) we have

16 @) I < B+ o [Ar o (—2322 . 2220 4 gy (0 () < g )] |
(IT1.31) +C7-W+C7-Ho ) |
<Cs - llllo- () I+ C7 - L+ G- [lo (Prgw) |

Considering the sum

2. Cs - (I11.30) + (IIL31)
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leads to

(I1.32) Il < Co - Ll 4 ¢y - [Py
Hence for k£ € N satisfying & > 2 - C9 we obtain
(IT1.33) Ml <2 Co - [Py -

This completes the proof. g.e.d.

The following result can be proved by Corollary III.A and the method
used in the proof of Proposition ITI.B.

Corollary III.B. Assume that ¢ € ' (P(E) : R) satisfies the nor-
malization condition

/ ¢Q_0<:>/ G (1) - Q=0.

Then for each v € N there exists k., € N such that for k > k, we have
(IL34) Ay +Au)" 9l < OV [[(Av + An)” o Py

Here the constant C) > 0 is independent of k € N.

Proposition ITII.C. Assume that ¢ € ' (P(E) : R) satisfies the nor-
malization condition

/ ¢Q_0<:>/ G (1) - Q=0.

Then there exists a constant C' > 0, mdependent of both N € N and
k € N, such that the following statement is true: Given N > 2 there
exists kn € N such that for k > kn we have

(I11.35) gl < o |25y

Proof. By (11.12) we have
~6 L™ k™ _
[k]’l/J P ¢+ 4D0( )’l?[)_i_kkk 4D(D(k 0),1/)
Thus from (II1.27) it follows that for k large enough,
Nl <c || “¢H+o o8 () |
(IT1.36) +C- | D () w

<C- H k]¢H NC - JIHEZ1HI] ||
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Here the constant yC > 0 depends on N but is independent of k.
Thence (ITI1.35) is true when k is sufficiently large.  q.e.d.

The following result can be proved by Corollary ITI.B and the method
used in the proof of Proposition II1.C.

Corollary IIL.C. Assume that ¢ € I'(P(E) : R) satisfies the nor-
malization condition

/ 1/;-9:0<:>/ g(p)-Q=0.
P(E) P(E)

Then for each v € N there exists a corresponding constant C" > 0,
independent of both N € N and k € N, such that the following statement
is true: Given N > 2 there exists k(y.ny € N such that for k > k(,.n)
we have

(IL37) Ay + Ax) gl < CO- [ Ay + An)7 0 258y

IV. Proof of Theorem B via the Contraction Mapping
Theorem

Assume that U is a coordinate open subset of P(E). One nonlinear
partial differential operator & of polynomial form with smooth coeffi-
cients on U will be called “genuinely nonlinear” if and only if for any
e ¢ I'(U : R) each single term of Be can be expressed as the product of
one smooth function on U and the product of at least two partial deriva-
tives of . Thus any nonlinear partial differential operator of polynomial
form on U, without the zero-th order part, can be expressed as the direct
sum of one linear partial differential operator on U and one genuinely
nonlinear partial differential operator on U.

Assume that 1 is a smooth function on P(F) satisfying the normal-
ization condition

/ 1/;-9:0<:>/ g (¢)-Q2=0.
P(E) P(E)

Let
NWE] < P >= NWk] T 100%.
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133¢9

Here ywii = owii) +i00¢0 + Z,]gv 1 is determined by the Induction
Scheme introduced in [9]. We set  H[;) < ¢ > to be the Kéhler metric
on P(E) induced by ywp < >. (Here k is supposed to be sufficiently
large.) Let

) (—=24m+n)

| ywre <>
Slk) (Nw[k] <y >) :(N UE]—2+m+n)!

A (—Ck C Wi <Y > +%5810gdet vHip <9 >) .

Then the constant Hermitian scalar curvature equation for
is

(S) Sik) (Nw[k} < >) = 0.
Note that

S
(V1) gy (wip < >) = Sty (weop) + il + 3 Bpg (1),

in which % and B, () are respectively the linear part and

the “essentially genuwinely nonlinear” part. Elementary Calculus shows

that, on each coordinate open subset U of P(FE), the “essentially gen-

n (k]
Q

~WIK] < ¢ >

uinely nonlinear” partial differential operator can be expressed in

the following form

V¢1 V¢2 Von
Ng[k =cy, - UG[[IC]V(% ]
[Vqﬁ Vd)l Z¢k2+ +V¢N]
(IV.2) 4
det yHp <4 >

[Vq& V¢1_Vk¢k2+ +V¢N
n UK
(det NH[k} < >) : (det NH[Ic] < >)

with the following property being satisfied:
[V% V¢1.V¢2+ +Vk¢]>VN] )

. UG[ ] and all the numerators on the right-
hand side of (IV.2) are 4-th order genuinely nonlinear partial differential
operators of polynomial form on U with coefficients depending on k£ and
on the partial derivatives of elements of the following set

¢1‘ b2 (2N
{% E Rk +kN}
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in the polynomial way.

Vo1 Voo Von
. Voo Tt N . .
Now we consider UG[[Ic k as one functional in the

following set of variables

(Vip : VoV : VoVoViy : VoVoVoVi).

Let B be any given compact subset of U. Then by the Sobolev Embed-
ding Theorem and elementary Calculus (Chain Rule and Leibniz Rule)
it is easy to see that there exists 4, € N such that, for v > 4,,

Voo Y1, Vo2 +___+Vk¢1>VN

UG[[H FURR - ](w:Vow:VoVow:VoVoVow)eHW

for any ¢ € H?7™ with support on B C U. Similarly by the Sobolev
Embedding Theorem and elementary Calculus (Chain Rule and Leibniz
Rule) it is easy to see that there exists 4, € N such that, for v > 5,, we
have

\ v v
[Vd)o:i,fl :be,f +- éN

] B (Vo : VoVi) : VoVoVi) : VoVoVoVi)
det ~Hi < >

vG, c HI?V

and
[V(boiLlfl :Lki? +-t+ Vén

U(éf[k] 2 (Vo : VoVi) : VoVoVi) : VoVoVoVi)
(det NH[k] < >) . (det NH[k] < >)

c H[Q’Y]

for any ¢ € H27+4 with small H?Y*4-norm and with support on B C
U. (Here we certainly require that 7, is large enough so that det  Hp) <
1 >, in the denominators above, is at least continuous and bounded
away from 0 on U for any 9 € H?%+4 with small HZ%+4-norm and
with support on B C U.) It is important to note that 4, and ¥, are
essentially independent of the choice of (k : N) because we will only
consider the case where both k and N are large.

Let Ry denote the inverse of @ By the definition of &,
(IT.1), it is obvious that

(IV.3) /P(E) 2OmW) o 0,

Vi € I' (P(E) : R) satisfying the normalization condition / P-Q=0.
P(E)

Thus for any v € N we have

(1V.3) /P T )0 =0
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and, by Corollary III.C,
k-k

(IV'4) H Nm[k} (QO)HH[27+4] < CM S Tom ||<10||H[2’Y]
k

Yo € H[? satisfying the normalization condition / w-Q=0. Be-
P(E)

. . . . Gy (¥)
sides we note that the “essentially genuinely nonlinear” part Y—g-—

satisfies

(IV.5) / M Q=0
pe)  §
because
(IV.6) / Sy (vewpy) =0 = / Sy (v <9 >)
P(E) P(E)

by cohomological consideration.
Now for (y:¢: k) € Nx N x N we set

Sil} = {w et [ g 0=0mnd Wl < k} .

P(E

Let 7, = max (9, : ,). Since all the “essentially genuinely nonlinear”

partial differential operators #, depending on N and on k, have the
same “essentially genuinely nonlinear” form it is easy to see that, for
each v > ,, there exists ¢, > 0 such that the following statement is
true: Given ¢ > ¢y and N > 2 there exists one corresponding constant
K(y.q:n) € N such that the composition map

~ O[k]
Q

. ql (7]
: qS[Z] — qS[Z]

(IV.7) (=2+m+mn)l- (Ryo

is contractive with contraction constant < % for any £ > K(y.q:n)-
We are now ready to solve the constant Hermitian scalar curvature
equation S[k] (Nw[k} < >) =0

St (vwim) ~ S (%) N v (¥)

(IV.8) Q (2 +m+n)l 0 Q

=0.

Applying (=2 +m +n)!- Ry, to both sides of (IV.8) we obtain
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Now we want to apply the Contraction Mapping Theorem to (IV.9) for
P € ‘IVoS%Z}O]' Thus we must require that

Stk (v wik)

H[2v0+4]

is sufficiently small when compared with k~%°. However, by Corollary
A of [9] and by (IV.4) (Corollary III.C), we can achieve this easily by
choosing N € N sufficiently large. Now we fix one such N. Then it
is obvious that (IV.9) can be solved uniquely whenever k is sufficiently

large: there exists k(,,.,, .n) € Nsuch that (IV.9) can be solved uniquely

ing SE,ZT} foreach k > k(,,.q, .n) by the Contraction Mapping Theorem.

Note that this method can be used to prove the required existence
result for any choice (7 : g) satisfying v >+, and ¢ > ¢,. Thus Theorem
B is proved. qg.e.d.

Appendix

In this Appendix we prove certain results which have been used in
[9] and the former context of this paper.

Proof of Proposition A of [9]. 'To show that

=41 H - Gay - Gyg - W - Wg + (47 +270) - q - q
H-H

on P (C") is orthogonal to the eigen-space of the lowest non-zero eigen-
value 47n of the (Fubini-Study) Laplacian on P (C") we only need to
prove that

(A A) —4m-H-Y qary @y 3 Wa Wa+(47+2mn)-q-q _ (—4rn-id.+Afp.s) (i . i)
: H-H - 2 H HJ/-

We can check this easily at the point [(0:---:0:1)] € P(C"): Direct
computation shows that at [(0:---:0:1)] € P(C") we have

8@?211}7 (%'%):_2'qnn'an'577+2'Qn7'an+2'an'q77
Vy # n. Since at [(0:---:0:1)] € P(C")

00
Aps=—dr- Y o
-5 m = 8@78%’

505



506 YING-JI HONG

we have

(—4mn - id. + Ap.s) (% : %) = —dm- —n'an'an+2'qu'qm
Y#D
— _ 8- (Z Gy - qvn)
+ (470 + 87) - gun - gnn
at [(0:---:0:1)] € P(C") because ¢ is traceless: Y gy, = 0. Thus

(A.A) isvalidat [(0:---:0:1)] € P(C").
But this result actually suffices to show that (A.A) is valid every-
where on P(C"): Any point on P(C") can be transformed to

[(0:---:0:1)] e P(C")

via some unitary transformation of C". Since Ap_.g commutes with uni-
tary transformations of C", it can be checked directly that (A.A) is valid
everywhere on P (C") by considering the action of unitary transforma-
tions of C" on q. qg.e.d.

Explicit expression for elements of 7. Assume that U is one
coordinate open subset of M so that U can be holomorphically identi-
fied with some open neighborhood of 0 in C"™. Given one holomorphic
framing

{57 el (U : E) :'yENand'ygn}
of E over U the bundle F|y can be identified with C* x U holomorphi-
cally. Thus the projection map 7 can be expressed explicitly as follows:

7:C"xU>S (w:z)— z€U.

Besides the Einstein-Hermitian connection A on E can now be inter-
preted as one gl (C")-valued one-form on U:

Vs = sA.
Let
haB = HE (Sa : Sg).

We want to express elements of the distribution H of horizontal spaces
on P(F) induced by the Einstein-Hermitian connection A on E ex-
plicitly. Suppose that z € U and x € T, (U). Then for w # 0 the
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C"-directional component of the horizontal lifting of x € T, (U) at
(w:2z) e C* x U is

> (30 —wy - Agy (%)) - ep.

Here ey is the 6-th coordinate vector of C". Suppose that < ) wy-ep > is
the one-dimensional subspace of C" spanned by the element ) wy-ep # 0
in C". Then &Uﬁ is the quotient space which makes the following
sequence
C’I’L
0—<>Swy-eg>—>C"— ——=————0
< Z wy - €y >

exact. Thus for the holomorphic projection map

i P(E) — M
the C-linear map from < > wy - eg > to % defined by
(A.B) > wg - eg > [0 (3 —wy - Agy (%) - e9] € Zyars

is the PP(C")-directional component of the horizontal lifting of
x €T, (U) at the point ([> wg - €] : 2) € P(C") x U.

Special coordinate system. Now we assume that

hog = dap
and
A=0
at the point (0:---:0) € U. Besides we assume that
wnt (52 1 =i+ 5% ) = O
and

d(wM (%:_i'ag,,)) =0

at the point 0 € U. The following map
CEMP) x U s (b 2) — (0w, =1)] 1 2) € P(C") x U

defines one holomorphic coordinate system on the corresponding open
subset of P (C") x U. Elements of H can then be expressed explicitly as
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follows: Given z € U and x € T, (U) the C(='*™ -directional component
of the horizontal lifting of x € T, (U) at

([(0:---:0:1)]:2) eP(C") xU
> = [R (Ao (3)) - 5% + S (Aga (9) - 5| € T (T,
0#n

Here R (o) and < (e) are respectively the real part and the imaginary

part of e. Besides uyp and vy are the R-valued coordinate functions on
C(=1+n).

Wy = ug + 1 - vy.
Assume that z, and y, are the R-valued coordinate functions on U:
Zy =Ty + Yu-

Then for each f € I'(P(E) : R) we have the following result: Given
z € U we have

=3B dw, + 3 S A () | -z

v#n 0#n
and
0
onf =3 oLz + 3 D2 A, (52) | - da
0#£n
at the point ([(0:---:0:1)]:2) € P(C") x U. (Note that, in these

formulae, we have adopted the convention that w, = w.,, Yy # n, and
wy, = 1.) Besides we note that

2]
wf=2 gk -duw,
Y#n

and
onf = ok - dz,
at any point ([(w:1)]:0) € P(C") x U. Now for the representative

L .99 log Hy~
27
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of the Euler class e (L*) of L* on P(F) induced by the Einstein-Hermitian
metric Hg on F we have the following result:

% -00log Hp -

= = . _(E h"‘”'wo’)'z h‘rﬂ'wr haﬁ . _
" 047;'56 [ (3 haswa-g)” t S hagwaip dwg N\ dwe
o [ T | e ]
" B# (Zho‘ﬁ'wo"wﬁ)Q Zhaﬁ'wa'wﬂ wg 2
" -
(A.D)
B Ohor iy, ., ) - T ohag ]
+27r ; (E hag"wa-u_)ﬁ)2 T Ehaﬁ'wa'u_lﬁ dzll A dwa
axn L ]
6haﬁ I, Ohor _
Lo [ (2% ) (2 2 ) |
+27r Z (E haﬁ'wa wﬂ)z le, A dZM
d0h,
—i (Z afuaazﬁ We wﬁ) _
+2_7: . Z Zh'aﬂ"fwa'ﬂ)[g ) dzl/ A dZU

We will now use the Special Coordinate System to prove the un-
proved results stated in Section I.

Proposition I.A. Given f € T'(P(F):R) we have the following
equalities

iAo (99), 7= 2L
and A
iAo (90),, f = 2L

Proof. We have
AV:dt/odv:d*odv:d*oav—i-d*oév

and
AM:d}kMOdM:d*OdM:d*OaM—i-d*OgM.

Once we have proved that

(A.1) d*ocdy =i-Ayo (56)V



510 YING-JI HONG

and

(A.2) d* o 0h =i Arro (99),,

our assertion follows immediately because
T 0By —T a0 =i Ay o (00), —i- Ay e (30),
and
d* oy =d 00y =1i-Ayo(09),, =i Ao (dD),,
Now we prove that (A.1) and (A.2) are valid at the point

([(0:---::1)]:0) e P(C") x U

using the Special Coordinate System. Note that

d"z—*d*z?—(dww_V% +dU_J'y|—V%>
v#£n

+Z(dzu|_v a +d2u|_V%>

Ozy

at the point ([(0:---:0:1)]:0) € P(C") x U. Here o_e is the C-
linear inner product acting on the complexified cotangent bundle of
P(E) induced by the Riemannian metric on P(£). Thus at the point

([(0:---:0:1)]:0) € P(C*) x U we have
Yd* o0y f
== > [dwﬁ L (Vadwa> + dwg L (Vadwa>]
a#n and B#£n dwg o
0 _
_ % : Z |:dzu L Va?u dwy + dz, . Vagu dwv]
7D
09
o 31?17(9{117 - 2m+
7D

-3 it [ A ()]

0#£n
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and

doduf==Y 4> [dw7L<Vaidzu> +dw7L<v 0 dzu>]
Wy

y#n "
=Y Y[ (V g ) e (9 )
- Z 3233};#

- a% [Z_%A"” (%ﬂ '

0#n

Using (A.C) and (A.D) in the defining formula of the Levi-Civita con-
nection induced by the Hermitian form (metric)

-~ /L %
w = Il¢, (%FHL*> + TTwym
on P(F) it can be checked directly that

20 9 9 9
fodvf=-2m-) waafwy Gk [Z — a2, Aon (m)}

v#n 0#n
and
00
d oduf=- 82u8fzu 3’(1)9 [Z 2. A ( )]
0#£n
at ([(0:---:0:1)]:0) € P(C") x U. Since A is FEinstein- Hermitian we

have for 0 # n
Z 3Zu (_> =0

at0eU. Thusd*oavf_zAVo( ) fandd*oaMf—zAMO(aa) I
at the point ([(0:---:0:1)]:0) € ((C") x U and thence everywhere
on P(E). q.ed.

Proposition 1.B.

AMOAV:AVOAM.

Proof. Assume that f € I' (P(%) : R). By Proposition I.A we have

N 1+">Aw
2 (=14n)t'm

(L*)< ”WwM
(=24n)t'm

(A.3) = i0Of A
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and

L*) (1) £y, (1)

AMf e(L*)(flen)/\wm L= 8(
(A.4) : M =100 f N (—Tn)-(—T+m)!

2 (=14+n)l-m!

Now we use the Special Coordinate System to show that
AM o AV = AV o AM

at the point ([(0:---:0:1)]:0) € P(C") x U. Using (A.D) and (A.3)
it is easy to see that

L

S

L A
o B?_u v e(L*)(_l+")Aw]\T’/}

] .
2 (—14n)!-m!

e(L*)(2*")/\<L£_O£B?_e(L*)>/\wﬁ
w 2

A
+ ‘Z/f ) (—2+n)!-m!

Zu Oz
(=2+n)l-m!

(L‘ o oL g iddf | Ae(L*) "2 aum
a

i53f/\e(L*)(3+")/\<L' o oL » e(L*))/\wﬁ
oz Oz

+ T

oL 5 to both sides of (A.3). Now by (A.D) we have

1 Ozp

by applying £

e}
oz,

Ic, o (Z[,

o oL e(L*)> :%- Z dwg N dwg,

oz Oz
a a a#n and f#n
90hap 90h
' [Z (_azﬂaz; T hap - 53 52

=0,

because Hp is Einstein-Hermitian. Thus we infer from (A.5)

. Ay (Avf . e(L*)(_1+")AwJ\”/}
9 2 (—14n)t-m!

A6 B ZE% oﬁ&AVf e(L*)(_lJ"n)/\wﬁ
( . ) = D) ' (—14+n)lm!

_ e(L* (—2+4n) W
- (Zga? oL s i&&f) e
Zu

Ozy
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at the point ([(0:---:0:1)]:0) € P(C") x U. Similarly it is easy to
see that
) AC% O[,%AMJ{ e(L*)(—lJrn)/\wﬁ
Y D) B Sy |
Y#EN

e(L*)(71+")/\w§V;1+m)

(A.7) Crrre it A | 27 ;Laf}v Lo i00f
’Y n
by applying
2 - Zﬁagv o L
Y#EN

to both sides of (A.4) and using the following result:

I, o | 27 - Zﬁ o oLl 52 (L*) =i Z dwg N dwg

Bw'y

y#n a#n and B#n

(AE) : Z (hay = hyg + hagp - hoyy)
Y#D
=i-n- Zdu_’v/\dwv
Y#n
=—-2r-n-l¢, ce(L¥)

at the point ([(0:---:0:1)]:0) € P(C") xU. Now we infer from (A.7)
and (A.6) that

Ay (ApfY e ="+ nwp
B 7 2 ) (=14n)tm!

e(L*)(71+")Aw§\21+m)
(=14+n)-(—1+m)!

A2r-Y Lo ° L o i00f

y#n o
“)(=24m) gy _
= e A (Zﬁaa oL o z&&f)
Zu
AM Avf e(L*)(71+")/\wﬁ
o 9 2 ) (=14n)!-m!
at the point ([(0:---:0:1)]:0) € P(C") x U. Thus Ap 0o Ay =
Ay o Apr at the point ([(0:---:0:1)]:0) € P(C") x U and thence

everywhere on P(F). q.e.d.



514 YING-JI HONG

Proof of Lemma I.A. By using the Special Coordinate System we
only need to show that

AVQ+TW(T/J)) = QM (o ()

at ([(0:---:0:1)]:0) € P(C") x U. Actually it is easy to see that
B AVQM2(U (4)) -e(L*)(an) A v:n_z\"%
() A Ao 5
—6( ) /\m/\’l( )MO'(T/J)/\W
. Lo oL o Mg, e(L¥)
0w~ Ow~y
Y#D
by applying
27 - Z E@% o ,C%

to both sides of

— e (L) AL 7 (89),,6 ()
A (Z (58)M ¢o + HcMe (L*))
and using (A.E). However by (A.D) it is easy to see that

271—';[’.3&, O,C%HCMG(L*) :i-ZdZVAdzu
Y#R

T Z 382%2 + Z oy - 5)2’3"5
7D 7D
= — 27 - (trace(5s Fp,) +n - e, e (L))

at the point ([(0:---:0:1)]:0) € P(C") x U. Thus
ArQue) = Gy (5 (4)

follows immediately.
To see that Ay Qs (6 (¢)) € T'(M : W) we simply consider the ac-
tion of unitary transformations of C" on the expression of

(trace(stFp,) +n - Te,, e (L*))

in Special Coordinate Systems.  q.e.d.



CONSTANT HERMITIAN SCALAR CURVATURE EQUATIONS 515

References

[1] D. Burns & P. de Bartolomeis, Stability of vector bundles and extremal metrics,
Invent. Math. 92 (1988) 403-407.

[2] S.Bando & T. Mabuchi, Uniqueness of Einstein-Kdhler metrics modulo connected
group actions, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10
Kinokuniya, Tokyo and North-Holland, Amsterdam, 1987.

[3] E. Calabi, Ezxtremal Kihler metrics, Seminar on Differential Geometry, Ann. of
Math. Stud., Princeton University Press, New Jersey, 102 (1982).

[4] S. K. Donaldson, Anti-self-dual Yang-Mills connections on complex algebraic sur-
faces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1-26.

[5] , Infinite determinants, stable bundles and curvature, Duke Math. J. 54
(1987) 231-247.
[6] , Remarks on Gauge theory, complex geometry and 4-manifold topology,

1997.

[7] D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order,
(Second Edition) Springer, Berlin, 1983.

[8] P. Griffiths & J. Harris, Principles of algebraic geometry, John Wiley, N.Y., 1978.

[9] Y-J Hong, Ruled manifolds with constant Hermitian scalar curvature, Math. Res.
Letters 5 (1998) 657—673.

[10] S. Kobayashi, Differential geometry of complex vector bundles, Iwanami Shoten
and Princeton Univ. Press, 1987.

[11] C. LeBrun & S. R. Simanca, Eztremal Kdihler metrics and compler deformation
theory, Geom. and Funct. Anal. 4 (1994) 298-336.

[12] C. LeBrun, Polarized 4-manifolds, extremal Kdhler metrics, and Seiberg- Witten
theory, Math. Res. Letters 2 (1995) 653-662.

[13] M. Liibke, Stability of Finstein-Hermitian vector bundles, Manuscripta Math. 42
(1983) 245-257.

[14] C. H. Taubes, The Seiberg- Witten invariants and symplectic forms, Math. Res.
Letters 1 (194) 809-822.

[15] , The Seiberg- Witten invariants and the Gromov invariants, Math. Res.

Letters 2 (1995) 221-238.

[16] G. Tian, Kdhler-Einstein metrics with positive scalar curvature, Invent. Math.
137 (1997) 1-37.



516 YING-JI HONG

[17] K. Uhlenbeck & S-T Yau, On the ezistence of Hermitian Yang-Mills connections
in stable bundles, Comm. on Pure and Appl. Math., Supplement 39 (1986) S257-
S293.

[18] S-T Yau, On the Ricci curvature of a compact Kihler manifold and the complex
Monge-Ampere equation. I, Comm. on Pure and Appl. Math. 31 (1978) 339-411.

TRANSWORLD INSTITUTE OF TECHNOLOGY, TAIWAN



